Density maximizers of layered permutations

Adam Kabela
joint work with Dan Král', Jon Noel and Théo Pierron
A permutation is called layered if it can be obtained from the identity permutation $(1,2, \ldots, k)$ by splitting it and reverting the ordering within each layer. For instance, the permutation $(13,12, \ldots, 1,14,16,15)$ is layered; it has three layers and the sizes of the layers are $13,1,2$. It is known that for every layered permutation π and every positive integer n, the set of all permutations of length n maximising the density of π contains a layered permutation. Furthermore, if π has no layer of size 1 , then all density maximisers are layered. Known results also indicate that the layers of size 1 in π play a key role in determining the structure of the layered density maximisers.

We consider a layered permutation π and the density maximisers of π which are layered, and we investigate the question whether the number of their layers can be bounded. We show that the answer is negative if the first layer of π is long and the second layer is of size 1 ; for instance, π can be chosen as ($13,12, \ldots, 1,14,16,15$). This disproves a conjecture of Albert, Atkinson, Handley, Holton and Stromquist [Electronic Journal of Combinatorics (2002)] which suggested a positive answer for every π having no consecutive layers of size 1 and the first and last layer of size at least 2 . We complement this result by showing that the conjecture is true under additional assumptions concerning the shortness of the first and last layer.

